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Abstract The term JavaScript Malware describes attacks
that abuse the web browser’s capabilities to execute mali-
cious script-code within the victim’s local execution context.
Unlike related attacks, JavaScript Malware does not rely on
security vulnerabilities in the web browser’s code but ins-
tead solely utilizes legal means in respect to the applying
specification documents. Such attacks can either invade the
user’s privacy, explore and exploit the LAN, or use the vic-
timized browser as an attack proxy. This paper documents
the state of the art concerning this class of attacks, sums up
relevant protection approaches, and provides directions for
future research.

1 Introduction

We’re entering a time when XSS has become the new
Buffer Overflow
and JavaScript Malware is the new shellcode.
Jeremiah Grossman [22]

Web browsers are installed on virtually every contempo-
rary desktop computer and the evolution of active technolo-
gies such as JavaScript, Java or Flash has slowly but steadily
transformed the web browser into a rich application platform.
Furthermore, due to the commonness of Cross Site Scripting
(XSS) [13] vulnerabilities the number of XSS worms [63] is
increasing continuously. Therefore, large scale execution of
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malicious JavaScripts is a reality nowadays. Additionally, if
no XSS flaw is at hand, a simple well written email usually
suffices to lure a potential victim into visiting an innocent
looking web page that contains a malicious payload. For
all these reasons, the browser was recently (re)discovered
as a convenient tool to smuggle malicious code on the vic-
tim’s computer and behind the boundaries of the company’s
firewall. While earlier related attacks required the existence
of a security vulnerability in the browser’s source code or
libraries, the attacks which are covered in this paper simply
employ the legal means that are provided by today’s browser
technology.

Within this context, the term “JavaScript Malware” was
coined by Grossman [22] in 2006 to describe this class of
script code that stealthy uses the web browser as vehicle
for attacks on the victim’s local context. In this paper we
discuss capabilities of such scripts in respect to invading the
user’s privacy (Sect. 3), exploiting the local LAN (Sects. 4
and 5), and abusing the victimized browser as an attack proxy
(Sect. 6).

2 Circumventing the same origin policy

2.1 The JavaScript security model

For security reasons, certain functions of client-side browser
technologies are subject to major restrictions. In this section,
we describe these restrictions in respect to JavaScript, but
similar concepts apply to other active client-side technologies
such as Flash or Java applets.

The Same Origin Policy (SOP) is the fundamental secu-
rity policy that applies to active client-side content that is
embedded in web pages. It was introduced by Netscape
Navigator 2.0 [62] and derives access right from the URLs
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Table 1 The SOP in respect to
the URL http://store.company.
com/dir/page.html [62]

URL Outcome Reason

http://store.company.com/dir2/other.html Success

http://store.company.com/dir/inner/another.html Success

https://store.company.com/secure.html Failure Different protocol

http://store.company.com:81/dir/etc.html Failure Different port

http://news.company.com/dir/other.html Failure Different host

of the respective elements. More specifically, a given Java-
Script is only allowed read and/or write access to properties
of elements, windows, or documents that share the same ori-
gin with the script. In this context the origin of an element
is defined by the protocol, the domain and the port that were
used to access this element. See Table 1 for examples.

Effectively the SOP restricts a JavaScript that was received
over the Internet to a sandbox defined by its serving web
server. More precisely such a script is subject to the following
restrictions:

1. No direct access to the local file system. From within a
JavaScript/HTML context local files can only be referen-
ced through the file://meta-protocol. An attempt by
a script delivered through HTTP to directly access the
target of such a reference would be a violation of the
“protocol”-rule of the SOP.

2. No direct access to other hosts but the one that served
the web page in which the script was included, due to the
“domain”-rule of the SOP.

3. No direct access to other applications on the same host
that are not hosted by the same web server, due to the
“port”-rule of the SOP.

While port and protocol are fixed characteristics,
JavaScript can influence the host property to mitigate this
policy. This is possible because a webpage’s host value is
reflected in its DOM (Document Object Model [30]) tree as
the domain attribute of the document object. JavaScript
is allowed to set this property to a valid domain suffix of
the original host. For example, a JavaScript could change
document.domain from www.example.org to the suffix
example.org. JavaScript is not allowed to change it into
containing only the top level domain (i.e., .org) or some
arbitrary domain value.

As stated above, the SOP defines the access rights of a
given script. A JavaScript is only allowed access to elements
that are part of a document which shares the same origin
as the document the respective JavaScript is included in. In
this respect, the SOP applies on a document level. Thus, if a
JavaScript and a document share a common origin, the SOP
allows the script to access all elements that are embedded in
the document. Such elements could be, e.g., images, style-
sheets, or other scripts. These granted access rights hold even

if the elements themselves where obtained from a different
origin.

Example The script http://exa.org/s.js is included in the
document http://exa.org/i.html. Furthermore i.html
contains various images from http://picspicspics.com. As the
script’s and the document’s origin match, the script has access
to the properties of the images, even though their origin dif-
fers from the script’s.

2.2 JavaScript networking capabilities

JavaScript is limited to HTTP communication only. The
JavaScript-interpreter possesses neither the means to create
low-level TCP/UDP sockets nor other capabilities to ini-
tiate communication using other protocols. More precisely,
there are two distinct ways for a JavaScript to create network
connections: Direct and indirect communication:

Direct communication: With the term direct commu-
nication we denote the capabilities of a JavaScript to ini-
tiate a direct read/write HTTP connection to a remote host.
For this purpose modern JavaScript implementation provide
the XMLHTTPRequest-API [32] which was originally deve-
loped by Microsoft as part of Outlook Web Access 2000.
XMLHTTPRequest allows the creation of HTTP GET and
POST requests. The target URL of the request is subject to
the same-origin policy, i.e., only URLs that satisfy the SOP
in respect to the web page that contains the initiating script
are permitted. This effectively limits a script to direct com-
munication with the web application’s origin host.

Alternatively direct communication can be accomplish
by combining iframes with dynamically submitted HTML
forms [52]: The JavaScript creates an HTML form inside
an iframe and submits it, thus creating a GET or POST
HTTP request. The server includes the requested data inside
the HTTP request’s response which replaces the iframe’s
content. As long as the SOP is satisfied in respect to the
containing web page and the iframe’s URL, the JavaScript
can access the iframe’s DOM tree to retrieve the response’s
data. Again, for a read/write communication the URL of the
target host is restricted by the SOP.

Indirect communication: Furthermore, a JavaScript is
able to initiate network communication indirectly via DOM
tree manipulation. Some HTML elements employ URLs to
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Table 2 Cross domain network
capabilities

a Depending on the browser the
actual capabilities may differ

Type Eventsa Readable infoa Access rightsa

IFrame onload – –

Image onload, onerror width, height –

Script onload – known elements can be called and read

reference remote data which is meant to be included in the
web page, such as images, or scripts. If a web browser encoun-
ters such an element during the rendering process, it initiates
a network connection in order to retrieve the referenced data.
In this case, the URL of the remote entity is not restricted
and can therefore point to cross-domain or cross-protocol
targets. JavaScript is able to add elements to the DOM tree
[30] of its containing page dynamically. By including ele-
ments that reference remote data, the JavaScript indirectly
creates a network connection to the host that serves this data.
Outgoing data can be included in the request by adding GET
parameters to the elements URL.

In most cases indirect communication can only be used
to send but not to receive data. An exception to this rule
(besides the side-effect based channels that will be discussed
in Sect. 2.3) can be created with the script-elements. By
providing a remote-script with a local callback-function, the
remote script can communicate data back to the calling script
(see [57] for details). For instance, so called “web APIs” that
export certain functionality of a web application and “web
mashups”, that employ such APIs to include cross-domain
content dynamically into web pages, are often created this
way.

2.3 A loophole in the SOP

As explained above, the direct cross-domain, cross-
application and cross-protocol networking capabilities of
JavaScript are restricted by the SOP. However, JavaScript
is permitted to dynamically include elements from arbitrary
locations into the DOM tree of its container document. This
exception in the networking policy and the fact that the SOP
applies on a document level creates a loophole in SOP: While
a script has no direct access to remote targets that do not
satisfy the SOP, the script can deduct various information
from the process of including the remote element into the
page’s DOM tree:

• The script can receive and intercept events that might be
triggered by the inclusion process.

• After the inclusion process has ended, the remote ele-
ment is part of the same document as the script. Due
to the document-level nature of the SOP, the script now
has access to properties of the element that are readable
through JavaScript calls.

Depending on the type of the element that was included in
the document and the web browser, the JavaScript’s specific
capabilities to gain information by the inclusion differs (see
Table 2). In the next sections we explain how this loophole
can be exploited for malicious purposes.

The basic reconnaissance attack (BRA)

Based on the above identified loophole in the SOP, several
reconnaissance techniques are possible. All these techniques
share the same basic method which allows a binary decision
towards the existence of a specified object. From here on we
denote the underlying method as basic reconnaissance attack
(BRA). While not being the sole technique that is employed,
variations of the BRA are used in several different contexts
through the remainder of this paper.

The BRA utilizes JavaScript’s event-handler framework
which provides hooks to intercept various events that occur
during the rendering of a web page. More specifically the
events onload and onerror in combination with
timeout-events are employed. Using these three indica-
tors a JavaScript can conclude the outcome of an indirect
communication (see Sect. 2.2) attempt. The BRA consist of
the following steps (see Listing 1 for an example):

1. The script constructs a URL pointing to the remote entity
of which the existence should be examined.

2. Then the script includes a suiting, network-aware ele-
ment in the webpage that employs the constructed URL
to reference the remote entity. Such elements can be, e.g.,
images, iframes or remote scripts.

1 <script >
2 function loaded (){
3 // resource exists
4 }
5
6 function timed_out (){
7 // resource does not exist
8 }
9

10 function err(){
11 // requesting the resource created an
12 error
13 }
14
15 i = new Image ();
16 i.onload = loaded;
17 i.onerror = err;
18 window.setTimeout(timed_out ,1000);
19
20 i.src = "http :// target.tld/path";
21 </script >

Listing 1 The basic reconnaissance attack

123



164 M. Johns

3. Additionally, the script might initiate a timeout-event
to receive information about the time needed for the
inclusion process.

4. Using JavaScript’s event-framework the script collects
evidence in respect to the remote entity:
• An onload-event signals the successful inclusion

of the element and thus verifies its existence.
• The indication given by an onerror-event depends

on the specific context. This events is triggered either
if the received data does not match the requirements
of the respective element or alternatively if the net-
work connection was terminated. Additionally,
depending on the employed HTML element the
JavaScript error console can be employed to gain fur-
ther evidence.

• The occurrence of the timeout-event prior to any
other event related to the inclusion process indicates
a pending network connection, hinting that the target
host does not exist.

2.4 Cross site request forgery

Cross Site Request Forgery (CSRF/XSRF) a.k.a. Session
Riding a.k.a Sea Surf is a client-side attack on web applica-
tions that uses indirect communication (see above) to exploit
implicit authentication mechanisms (see Sect. 4.1). More pre-
cisely, CSRF uses the cross-domain, cross-application and
cross-protocol capabilities provided by indirect communi-
cation initiate execute hidden, state-changing actions on the
attacked web application.

The actual attack is executed by causing the victim’s web
browser to create HTTP requests to restricted resources. This
can be achieved, e.g., by including hidden images in harm-
less appearing webpages. The image itself references a state
changing URL of a remote web application, thus creating
an HTTP request (see Fig. 1). As the browser provides this
requests automatically with authentication information, the
target of the request is accessed with the privileges of the per-
son that is currently using the attacked browser. See [5,41,64]
for further details.

3 Accessing local information: fingerprinting
and privacy attacks

In this section we discuss various techniques that aim at col-
lecting evidence concerning the malicious script’s local exe-
cution context. More precisely, the here discussed attacks aim
to gather information on the executing web browser, the local
machine, and the browser’s user. Such information include
previously visited sites, indicators whether the user is cur-
rently logged into given web applications, characteristics of
the local machine, and installed web browser add-ons.

Fig. 1 A CSRF attack on an online banking site

While in some cases such attacks are targeted directly at
the user’s privacy, the adversary might also use his findings
to identify existing vulnerabilities in order to decide on the
next step in his attack.

3.1 Subverting the user’s privacy with cascading style
sheets

3.1.1 Browser history disclosure using unique
background-picture URLs

In 2002, Clover [10] showed how CSS can be employed
to examine whether a given URL is contained in the brow-
ser’s history of visited pages. The underlying mechanism,
that is the basis of the attack, dates back to the early days
of web browsers: The colour used by the browser’s rende-
ring engine to display a hyperlink varies, depending on if the
user has visited the referenced site before. This behaviour
was adopted by CSS, resulting in the hyperlink pseudo-class
a:visited. Using this pseudo-class, visited links can be
outfitted with the complete set of CSS properties, including
the capability to include remotely hosted images to be used as
background pattern. Thus, sophisticated construction of lists
of hyperlinks and an according style sheet can be employed
to initiate indirect communication of private data:

The attacker compiles a list of URLs that should be mat-
ched against the user’s history. For each of these URLs he
creates a hyperlink labelled with a unique id-attribute. Fur-
thermore, he fabricates a style-sheet that contains unique
visited-selectors which are linked to the respective
id-attributes. By referencing an attacker-controlled cgi-script
in the CSS-selectors the adversary is able to deduct which of
the sites are contained in the browser’s history (see Listing 2).

1 <style >
2 #ebay:visited { background: url(http ://
3 evil.com/visited.cgi?site=ebay); }
4 </style >
5
6 <a id="ebay" href="http ://www.ebay.com"></a>

Listing 2 CSS visited page disclosure [10]
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3.1.2 Dynamic browser history disclosure with JavaScript

Furthermore, as discussed by Clover [10] and refined by
Grossman [21], it is also possible to accomplish the same
results completely on the client-side without requiring a
remote counterpart: JavaScript is able to read the applied
CSS-style (using the getComputedStyle-method on
Mozilla based browsers or IE’s currentStyle-property):
The attacker creates a CSS style-sheet that defines two dis-
tinct styles for visited and unvisited hyperlinks. For each tes-
ted hyperlink, a JavaScript reads the style information that
the browser applied to the element. Depending on which of
the two predefined styles is returned by the query, the script
can decide whether the user has visited the site in the recent
past (see Listing 3).

Usage of JavaScript to execute this attack provides several
advantages for the adversary: The malicious JavaScript can
construct the list of hyperlinks dynamically. This allows more
targeted, incremental attacks. Furthermore, only a rather
simple style-sheet defining two separate styles is required.
This eliminates the need for a list of unique selectors, thus
reducing the attack-code significantly.

1 <style >
2 a:visited { color: rgb(0,0,255) }
3 </style >
4
5 <a id="ebay" href="http ://www.ebay.com"></a>
6
7 <script >
8 var link = document.getElementById(’ebay ’);
9 var color = document.defaultView.getComputed

10 Style(link ,null). getPropertyValue (" color ");
11 if (color == "rgb(0, 0, 255)") {
12 // found
13 }
14 </script >

Listing 3 CSS visited page disclosure using JavaScript [21]

Utilizing the flexibility provided by JavaScript based dyna-
mic URL-construction, it has been proposed to extend this
technique to establish a list of terms that the user has looked
up using Internet search engines. This undertaking requires
examining large numbers of URLs, as most search engines
employ URL-schemes that contain numerous, context depen-
dent, and frequently changing parameters resulting in rather
large sets of possible URLs for non-trivial search terms. SPI
Labs [50] has shown that it is possible to stealthy check for
more than 40,000 unique URLs in five seconds using recent
hardware, thus rendering this privacy attack feasible.

3.2 Privacy attacks through timing attacks

Besides CSS based attacks on the user’s privacy, a whole
class of similar targeted timing attacks has been discussed.

3.2.1 Browser cache disclosure

Felten et al. [16] documented in 2000 how attackers can ini-
tiate timing attacks to determine if a given web browser has

visited a certain web page in the recent past. For this purpose
the adversary employs cacheable web-objects such as sta-
tic images and measures the time it takes to retrieve a given
object.

For example the attacker wants to know whether the victim
has been to http://company.com recently. For this purpose,
the malicious script stealthily embeds the logo of the targeted
site (http://company.com/logo.jpg) into its DOM tree, cau-
sing the web browser to request the image. Before its actual
inclusion in the web page, the image-element is outfitted
with an onload-eventhandler to measure the time that the
inclusion process takes. If the victim has been to the respec-
tive site in the last days, the image is still in the browser’s
cache, resulting in a very short loading time. If not, the image
has to be retrieved over the Internet, causing a significant lon-
ger loading process.

By measuring and matching the loading time against a
certain threshold the attacker can conclude if the image is in
the browser’s cache and thus, whether the victim has been to
the targeted web site.

3.2.2 Assessing the contents of non-cacheable pages

In 2007, Bortz et al. [4] extended Felten’s technique towards
non-cacheable web-objects. Their technique is based on the
observation that the time required to finish an HTTP request
depends on two factors: the time it takes to deliver the content
over the Internet and the time the web server consumes to
create the content. While the first factor is mostly constant
for a given network location, the second factor depends on the
actual query. A request for a static element (like a predefined
image) can be computed by the web server in a very short
time. However, if business logic and database queries are
involved, the time to create the response’s HTML document
differs heavily in dependence to the page’s final content.

Using this observation, Bortz et al. introduced cross-site
timing attacks which employ a technique related to the BRA
(see Sect. 2.3) to time the loading process of web pages. Their
technique is based on dynamically creating a hiddenimg-tag
that points to the targeted web page. This image-element is
outfitted with an onerror-eventhandler which is triggered
as soon as the first data-chunk is received by the browser, as
instead of image-data the response consists of HTML code.
By measuring the time-difference between the actual image-
creation process and the occurrence of the onerror-event,
the loading-time of the web page can be measured.

Furthermore, the described technique requires two timing
sources in order to factor out the timing overhead that is
introduced by the network. For this reason, first a request to
a static element of the targeted web site is created. Such an
element could be for example an image or a 404 error page.
As for such elements almost no processing time is required
by the respective web server, the time to load the element
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is roughly equal to the network-induced overhead. There-
fore, the result of this step can be used for future reference.
The second request is aimed at the actual target of the pri-
vacy attack. By calculating the difference between the prior
obtained reference value and the time it took to complete
the loading process, an estimate of the server-side compu-
ting time can be obtained. Using this technique, Bortz et al.
showed the possibility to determine, e.g., if a given browser
is logged into a given web application, or how many items
are currently contained in the user’s shopping cart of a given
online-retail store.

3.2.3 Precision of timing attacks

The precision of browser-based timing attacks is limited by
the precision of the employed timing-functions. JavaScript
provides the Date()-object. This object’s smallest unit of
time is a millisecond, thus setting an according lower bound
for the precision of attacks that are written completely in
JavaScript. However, Java’s timing-function nanoTime()
provides a timer that returns time to the nearest nanosecond.
Meer and Slaviero discussed in [55] how this timer can be
used within JavaScript timing attacks, utilizing either a spe-
cial purpose JavaApplet or the LiveConnect-feature [7].

3.3 CSRF-based privacy attacks

3.3.1 Establishing if the user is currently logged
into a given web application

Using a variation of the BRA (see Sect. 2.3), Grossman [20]
discussed a method to disclose whether the web browser pos-
sesses valid authentication credentials (for instance session
cookies or http-authentication information) for a given web
application: The basis of the attack is to test a browser’s capa-
bility to load a web page that is only accessible to authenti-
cated users.

The attack utilizes advanced error-handling which is pro-
vided by modern JavaScript interpreters. In the case of an
error within a JavaScript, thewindow.onerror-event pro-
vides limited access to the JavaScript error-console by com-
municating a short error-message, the URL of the triggering
script, and a numeric error code. This additional information
can be employed for fingerprinting purposes. By attempting
to load an HTML page into a script-tag by using the
page’s URL in the tag’s src-attribute, inevitably a JavaS-
cript parsing error is triggered, as the included data is HTML
and cannot be parsed by the JavaScript interpreter. Further-
more, depending on the authenticated state of the requesting
entity, a web application responds to a request for a restric-
ted resource with different HTML content (either with the
requested page or alternatively with an error page/a login
form). In many cases different HTML code leads to distinct

parsing errors. Therefore, a malicious script can, by inter-
cepting the error-code and messages, differentiate between
parse errors triggered by either response and thus determi-
ning whether the browser’s user is currently logged into the
application (see Listing 4).

1 <script >
2 function err(msg , url , code) {
3 if ((msg == "missing } in XML expression ")
4 && (code == 1)) {
5 // logged in
6 } else if ((msg == "syntax error" ) &&
7 (code == 3)) {
8 // not logged in
9 }

10 }
11 window.onerror = err;
12 </script >
13
14 <script src="http :// webapp.org"></script >

Listing 4 JavaScript login checker [23]

In addition, Robert Hansen discussed using restricted
images for the same purpose [27]. Some web applications
grant or deny access to resources like images depending on
the user’s authenticated state. By employing the BRA to
verify whether the images are accessible or not, the mali-
cious script can conclude if the user is currently logged into
the application.

3.3.2 Browser and local machine fingerprinting

Various local resources provided either by the local
machine or the web browser are accessible by specialized
URL-schemes, such asfile://,chrome://, orres://.
In late 2006 and 2007 several techniques have been dis-
cussed that employ these URL-schemes to gather informa-
tion concerning the malicious JavaScript’s local execution
context. The majority of these attacks is based on the BRA.
By dynamically including a cross-protocol resource in a web-
page and intercepting onload- and onerror-events, cer-
tain characteristics of the local context might be disclosed.
More specifically it has been shown how to:

• compile a list of installed Firefox extensions using
chrome-URLs [26],

• establish which software is installed on the local machine
using res-URLs [54],

• execute a dictionary attacks to disclose Windows user
accounts [71] or drive names [48],

• read Firefox settings [72],
• and check the existence of local files using the file-

handler [66].

As special-purpose URL-schemes are often treated diffe-
rently by the various web browser, most of these techniques
only work if a certain execution context (defined by browser,
browser version, and operating system) is given, thus limi-
ting the respective attack vector to a subset of browsers or
operating systems. Furthermore, many of these issues can be

123



On JavaScript Malware and related threats 167

regarded rather as implementation faults than fundamental
flaws rooted in the web-paradigm and thus should be resol-
ved in the near future. For these reasons, a further discussion
of these techniques is omitted in this paper.

4 Circumventing the firewall: Intranet reconnaissance
and exploitation

4.1 Using the firewall as a means for implicit authentication

With the term implicit authentication we denote authentica-
tion mechanisms, that do not require further interaction after
the initial authentication step. For example the way HTTP
authentication is implemented in modern browsers requires
the user to enter his credential for a certain web application
only once per session. Every further request to the applica-
tion’s restricted resources is outfitted with the user’s creden-
tials automatically.

Furthermore, with the term transparent implicit authenti-
cation we denote authentication mechanisms that also
execute the initial authentication step in a way that is trans-
parent to the entity that is being authenticated. For example
NTLM authentication [17] is such an authentication mecha-
nism for web applications. Web browsers that support the
NTLM scheme obtain authentication credentials from their
underlying operating system. These credentials are derived
from the user’s operating system login information. In most
cases the user does not notice such an automatic authentica-
tion process at all.

Especially in the intranet context, transparent implicit
authentication is used frequently. This way the company
makes sure that only authorized users access restricted resou-
rces without requiring the employees to remember additional
passwords or execute numerous, time-consuming authenti-
cation processes on a daily basis.

A company’s firewall is often used as a means of transpa-
rent implicit authentication: The intranet server are positio-
ned behind the company’s firewall and only the company’s
staff has access to computers inside the intranet. As the fire-
wall blocks all outside traffic to the server, it is believed that
only members of the staff can access these servers. For this
reason intranet server and especially intranet web server are
often not protected by specific access control mechanisms.
For the same reason intranet applications often remain unpat-
ched even though well known security problems may exist
and home-grown applications are often not audited for secu-
rity problems thoroughly.

4.2 Using a webpage to execute code within the firewall
perimeter

As motivated in Sect. 1 many companies allow their employ-
ees to access the WWW from within the company’s network.

Fig. 2 Using a webpage to access restricted web servers

Therefore, by constructing a malicious webpage and succee-
ding to lure an unsuspecting employee of the target company
into visiting this page, an attacker can create malicious script
code that is executed in the employee’s browser. As discussed
in Sect. 2 current browser scripting technologies allow cer-
tain cross-protocol, cross-domain, and cross-host operations
that can be used for reconnaissance attacks.

The employee’s browser is executed on a computer within
the company’s intranet and the employee is in general outfit-
ted with valid credentials for possibly existing authentication
mechanisms (see Sect. 4.1). Consequently, any script that
runs inside his browser is able to access restricted intranet
resources with the same permissions as the employee would
(see Fig. 2).

4.3 Intranet reconnaissance attacks

This section documents various techniques that aim to collect
information concerning a given intranet (Fig 3).

4.3.1 Portscanning the intranet

It was shown by various parties [24,49] how malicious web
pages can use indirect communication to port-scan the local
intranet. While the discussed techniques slightly differ, they
all are variants of the BRA (see Sect. 2.3):

1. The script constructs a local HTTP URL that contains
the IP-address and the port that shall be scanned.

2. Then the script includes an element in the webpage that
is addressed by this URL. Such elements can be, e.g.,
images, iframes or remote scripts.

3. Using JavaScript’s time-out functions and eventhandlers
as discussed in Sect. 2.3 the script can decide whether
the host exists and the given port is open: If a time-out
occurs, the port is probably closed. If an onload- or
onerror-event happens, the host answered with some
data, indicating that the host is up and is listening on the
targeted port.

Limitation: Some browsers like Firefox enforce a bla-
cklist of forbidden ports [60] that are not allowed in URLs.
In this case JavaScript’s port scanning abilities are limited to
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ports that are not on this list. Other browsers like Safari allow
access to all ports.

4.3.2 Selecting potential attack targets

To launch such an discovery attack, the malicious script needs
to have knowledge about possible reconnaissance targets.
Such knowledge can either be the intranet’s IP-range or the
internal DNS names of local hosts.

IP discovery with Java: In case the local IP-range is unk-
nown to the attacker, he can use the browser’s Java plug-in
to obtain the local IP-address of the computer that currently
executes the web browser which is vehicle of the attack.

Unlike JavaScript, the Java plug-in provides low-level
TCP and UDP sockets. The target address of network connec-
tions opened by these sockets is restricted by Java’s version
of the same-origin policy which only allows connections to
the IP address from which the Java applet was originally
received. After being instantiated, a Java Socket-object
contains full information about the connection including the
IP addresses of the to connected hosts. Thus, by creating a
socket and using the socket-object’s API, the browser’s local
IP address can be read by a Java-applet [47] and subsequently
exported to the JavaScript scope.

Additionally, Mozilla based and Opera web browser allow
JavaScript to directly instantiate Java objects using the Live
Connect-feature [7]. This removes the attacker’s necessity to
provide a separately hosted Java applet, thus allowing more
self-contained attacks:

1 function natIP () {
2 var w = window.location;
3 var host = w.host;
4 var port = w.port || 80;
5 var Socket = (new java.net.Socket(host ,
6 port )). getLocalAddress (). getHostAddress ();
7 return Socket;
8 }

Listing 5 Obtaining the local IP address

DNS bruteforcing: In the case that the execution of Java
content is disabled in the attacked web browser, the
adversary can resort to bruteforcing internal DNS names.
Robert Hansen documented in [28] that many companies
employ the same DNS server to resolve both their external
and their internal hostnames (see Listing 6). The attacker can
either try to obtain the full list of DNS entries using a zone
transfer or by bruteforcing well known names for intranet ser-
vers (e.g., intranet.company.com; [29] list more than 1,500
of possible hostnames). If such external lookups for internal
servers is possible, the attacker can gain knowledge on the
IP-range used in the intranet this way.

1 ...
2 10.0.1.10 intranet.godaddy.com
3 10.210.136.22 internal.iask.com
4 10.25.0.31 intranet.joyo.com
5 10.30.100.238 intranet.shopping.com
6 10.50.11.131 intranet.monster.com...
7 ...

Listing 6 Misconfigured DNS servers leaking internal IP addresses [28]

Fig. 3 Web page based reconnaissance of the intranet

If the respective company does not leak the internal
IP-range through misconfigured DNS servers, the attacker
can use the list of known DNS names to test if the targe-
ted intranet contains hosts that are assigned to one of these
names. To do so the malicious JavaScript has two options:
It can either employ a series of BRAs using the guessed
internal domain names as part of the URL (i.e., testing if a
host is assigned to http://intranet exists). Alternatively the
script can check if any of the domain names are contained
in the browser’s history using any of the techniques discus-
sed in Sects. 3.1, 3.1.2, or 3.2. Both methods do not suffice
to directly leak the actual IP-range to the attacker. However,
using these methods the attacker might identify possible tar-
gets for further attacks in the intranet. Furthermore, in certain
cases the existence of certain internal domain names provides
strong indications for the employed IP-range. For instance,
the home router “Fritz Box” [18] introduces the domain name
fritz.box to the intranet, pointing to the router’s admin
interface. By using the BRA to test for http://fritz.box the
attacker is able to learn that a Fritz Box is used in the exami-
ned intranet and based on the knowledge can guess the used
IP-range to be equal or close to the default range used by this
specific router (e.g., 192.168.172.0/24).

4.3.3 Fingerprinting of intranet hosts

After determining available hosts and their open ports, a
malicious script can try to use fingerprinting techniques to
get more information about the offered services. Again the
script has to work around the limitations that are posed by
the SOP. For this reason the fingerprinting method resembles
closely the port-scanning method that was described above
[24,49].

The basic idea of this technique is to request URLs that
are characteristic for a specific device, server, or application.
If such a URL exists, i.e., the request for this URL succeeds,
the script has a strong indication about the technology that
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is hosted on the fingerprinted host. For example, the default
installation of the Apache web server creates a directory cal-
led “icons” in the document root of the web server. This
directory contains image files that are used by the server’s
directory listing functionality. If a script is able to success-
fully access such an image for a given IP-address, it can
conclude that the scanned host runs an Apache web server.
The same method can be used to identify web applications,
web interfaces of network devices or installed scripting lan-
guages (e.g., by accessing PHP eastereggs).

4.3.4 Avoiding and brute-forcing HTTP authentication

If during the reconnaissance step, the malicious JavaScript
encounters a resource that is protected by HTTP authenti-
cation to which the browser not currently possesses valid
credentials, the web browser displays an authentication dia-
logue. This in fact discloses the ongoing attack and alarms
the victimized browser’s user that something unusual is going
on.

Esser [15] documented a method that can be employed by
the attacker to suppress such authentication pop-ups. Esser’s
technique is based on the creation of malformed HTTP URLs.
If such an URL is sent to the web server, the server identi-
fies the error in the URL before determining the addressed
resource. Therefore, the server does not map the URL to a
hosted resource and therefore does not recognize that a HTTP
authentication dialogue should have been trigger: Instead of
replying with a “401 Authorization Required” status code,
the server responds with “400 Bad Request”. Esser docu-
mented two ways to create such URLs that work with most
web servers: Either incomplete URL entities (e.g., http://10.
10.10.10/%) or overly long URLs (e.g., http://10.10.10.1/
AAA...AAA) that exceed the server’s restrictions on URL
size. Using Esser’s method, the adversary is still able to deter-
mine whether the host in question exists. However, determi-
ning if the examined IP hosts a web server and using the
fingerprinting technique detailed in Sect. 4.3.3 do not work
in combination with this evading method, as these techniques
require valid HTTP responses.

Additionally, Esser [14] demonstrated how Firefox’s
link-tag can be abused to execute brute-force attacks on
URLs that are protected by HTTP authentication. As the
content that is requested through link-tags is regarded as
optional by the browser, the tag does not initiate authentica-
tion pop-ups if it encounters a 401 response. Furthermore,
the rendering process of the page halts until the request that
was initiated by the link-tag has terminated. Thus, by using
the http://username:password@domain.tld-scheme the atta-
cker can iterate through username/password-combinations
and measure his success using the timing attacks that were
discussed in Sect. 3.2.

4.3.5 Technical Limitations of reconnaissance attacks

As employing the BRA for reconnaissance purposes depends
on the usage of timeout-events, any attack in this class
is subject to throughput-limitations induced by the timing-
induced overhead. While detecting existing resources takes
only a very short amount of time, probing a non-existing
resource requires at minimum the full timeout-period. As the
precision of the attack is related to the length of the chosen
timeout-period, the attacker has to decide between speed and
accuracy.

A series of reconnaissance probes can be accelerated by
parallelizing the requests, e.g., by creating several hidden
image-elements at the same time. However, the operating
systems and web browsers enforce various limitations in res-
pect to parallel connections. For instance, Windows XP/SP2
does not allow more than 10 outstanding connections at the
same time and the Firefox web browser only permits a maxi-
mum of 24 simultaneous established connections.

Lam et al. [51] documented that in their experiments they
were able to achieve maximum scanning rates between
approximately 60 scans/min (Windows XP SP2) and 600
scans/min (Linux). In addition, Grossman et al. [23] discus-
sed that JavaScripts stop-function can be used to terminate
outstanding connections in order to speed up the scanning
process.

4.4 CSRF attacks on intranet servers

After discovering and fingerprinting potential victims in the
intranet, the actual attack can take place. A malicious JavaS-
cript has for example the following options:

Exploiting unpatched vulnerabilities: Intranet hosts are
frequently not as rigorously patched as their publicly acces-
sible counterparts as they are believed to be protected by the
firewall. Thus, there is a certain probability that comparati-
vely old exploits may still succeed if used against an intranet
host. A prerequisite for this attack is that these exploits can
be executed by the means of a web browser [24].

Opening home networks: The following attack scenario
mostly applies to home users. Numerous end-user devices
such as wifi routers, firewall appliances or DSL modems
employ web interfaces for configuration purposes. Not all of
these web interfaces require authentication per default and
even if they do, the standard passwords frequently remain
unchanged as the device is only accessible from within the
“trusted“ home network. If a malicious script was able to suc-
cessfully fingerprint such a device, there is a certain probabi-
lity that it also might be able to send state changing requests
to the device. In this case the script could, e.g., turn of the
firewall that is provided by the device or configure the for-
warding of certain ports to a host in the network, e.g., with
the result that the old unmaintained Windows 98 box in the
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cellar is suddenly reachable from the Internet. Thus, using
this method the attacker can create conditions for further
attacks that are not limited to the web browser any longer.
Furthermore, Stamm et al. documented in [68] that by chan-
ging the device’s DNS settings this way, the attacker can
initiate a persistent “drive-by pharming” attack.

4.5 Cross protocol communication

Based on [70], Wade Alcorn [1,2] showed how multi-part
HTML forms can be employed to send (semi-)valid messages
to ASCII-based protocols. Prerequisite for such an attempt is
that the targeted protocol implementation is sufficient error
tolerant, as every message that is produced this way still
contains HTTP-meta information like request-headers.
Alcorn exemplified the usage of an HTML-form to send
IMAP3-messages to a mail-server which are interpreted by
the server in turn. Depending on the targeted server, this
method might open further fingerprinting and exploitation
capabilities.

4.6 Attacks that do not rely on JavaScript

Intranet exploration attacks like portscanning do not neces-
sary have to rely on JavaScript. It has been shown recently
[3] that attacks similar to the vectors show in Sect. 4.3.1 can
be staged without requiring active client-side technologies.
Instead timing analysis is employed.

Currently these attacks rely on a certain, not-standardized
behaviour of the Firefox web browser: In general whene-
ver a browser’s rendering engine encounters an HTML ele-
ment that includes remote content into the page, such as
image, script or iframe-tags, the browser sends an
asynchronous HTTP request to retrieve the remote resource
and resumes rendering the web page. However, the link-
tag does not adhere to this behaviour. Instead the rendering
engine stops the rendering process until the HTTP request-
response pair, that was initiated because of the tag, has
terminated. Thus, by creating a webpage that contains a
link-element, that references a local URL, and an image-
element, that is requested from the attacker’s host, the atta-
cker can use timing analysis to conclude if in fact an actual
host can be reached under a given local URL. Employing
this technique, an attacker can reliably create a mapping of
the local lan. However, the timing differences between the
response time of a RST-package, that was generated because
of a closed port, and an actual HTTP-response are hard to
measure from the attacker’s position. For this reason finger-
printing attacks are not yet feasible. As research in the area
of these attack techniques is comparatively young and web
browsers are still evolving, it is probable that there exist more
attack vectors which do not rely on active technologies.

5 DNS rebinding attacks

DNS rebinding is a powerful technique to undermine the
SOP. It was originally discussed 1996 by [65] in respect to
Java applets. In 2002 [56] showed that JavaScript’s SOP is
affected by the same issue. The attack is also known as “anti
DNS pinning” and “Quick Swap DNS”.

5.1 Leaking intranet content

As discussed above, the SOP should prevent read access to
content hosted on cross-domain web servers. In 1996 [65]
showed how short lived DNS entries can be used to weaken
this policy.

Example: Attacking an intranet host located at 10.10.10.
10 would roughly work like this:

1. The victim downloads a malicious script from www.
attacker.org.

2. After the script has been downloaded, the attacker modi-
fies the DNS answer for www.attacker.org to 10.10.10.
10.

3. The malicious script requests a web page from
www.attacker.org (e.g., via loading it into an iframe).

4. The web browser again does a DNS lookup request for
www.attacker.org, now resolving to the intranet host at
10.10.10.10.

5. The web browser assumes that the domain values of the
malicious script and the intranet server match. Thus, the
SOP is satisfied and browser grants the script unlimited
access to the intranet server.

Using this attack, the script can access the server’s content.
With this ability the script can execute refined fingerprinting,
leak the content to the outside or locally analyse the content
in order to find further security problems.

To counter this attack most modern browsers employ
“DNS pinning”: The mapping between a URL and an
IP-address is kept by the web browser for the entire lifetime
of the browser process even if the DNS answer has already
expired.

5.2 Breaking the browser’s DNS pinning

While in general DNS pinning is an effective countermeasure
against such an attack, unfortunately there are scenarios that
still allow the attack to work: Josh Soref has shown in [67]
how in a multi session attack a script that was retrieved from
the browser’s cache still can execute this attack. Furthermore,
we have shown [39] that current browsers are vulnerable to
breaking DNS pinning by selectively refusing connections:
After the DNS rebinding took place, the attacker’s web ser-
ver refuses connection attempts from the victim. These failed
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connections cause the web browser to renew its DNS infor-
mation for the respective domain, thus receiving the new
mapping.

Following our disclosure, Kanatoko [44] found out that
many browsers also drop their DNS pinning when the brow-
ser tries to access a closed port on the attacker’s host. Thus,
dynamically requesting an image from http://attacker.org:81
is sufficient to propagate the new DNS information to the
browser. See [34] for a full list of the different browser’s
pinning implementation which was compiled late 2007.

Additionally, Stuttard [69] pointed out that the web
browser’s DNS pinning does not apply when a web proxy
is being used, because in this situation DNS resolution is
performed by the proxy, not the browser. As he documented,
until now non of the widely deployed web proxies take DNS
rebinding attacks into account, thus rendering any browser-
based countermeasures useless.

5.3 DNS rebinding and Java

As detailed above, DNS rebinding attacks were originally
invented to undermine the SOP of Java applets [65]. For this
reason the JVM introduced strict DNS pinning in 1996 [59].
The JVM maintains its own DNS pinning table that is popula-
ted separately from the browser’s internal pinning table. This
table is kept for the complete livetime of the JVM-process.
However, several approaches to undermine the JVM’s DNS
pinning mechanism have been disclosed recently.

5.3.1 LiveConnect

As explained in Sect. 4.3.2, some web browsers allow
JavaScript to directly instantiate Java objects using the
LiveConnect-feature [7]. If a networking object like a socket
is created this way, the JVM immediately initiates a DNS
query to pin the object to the documents origin. We have
shown [40] that if at this point the DNS setting for the respec-
tive domain already has been rebound to the internal address,
the JVM pins the object to the internal IP address. This way
the attacker is able to employ Java objects that are available
through Java’s standard library in his attack.

5.3.2 Java applets and proxies

Byrne [6] documented that in cases where the browser and
the JVM are configured to use an outbound HTTP proxy, the
JVM can be tricked into pinning the internal IP address:

1. The victim’s web browser tells the proxy to load a web
page using the URL http://attacker.org/index.html.

2. The proxy queries the adversary’s DNS server for the IP
address of attacker.org.

3. The DNS server replies with the server’s address (e.g.,
200.200.200.200).

4. The proxy retrieved the web page and passes it on to the
browser.

5. The web page contains an embedded Java applet which
is hosted at http://attacker.org/bad.class.

6. The browser’s rendering engine encounters theapplet-
element and instantiates the JVM with the applet’s URL.

7. The JVM queries the attacker’s DNS server for
attacker.org’s IP address, bypassing the proxy.

8. The DNS servers replies to this second request with the
internal IP address (e.g., 10.10.10.10), which is pinned
by the JVM.

9. Then, the JVM initiates the retrieval of the applet’s code.
However, as the JVM is configured to use the HTTP
proxy, the applet itself is requested by the proxy which
still uses the server’s original IP address.

The result of this series of events is that the applet which
was retrieved by the proxy from 200.200.200.200 is pinned
by the JVM to 10.10.10.10, thus enabling the attacker to use
it as part of his rebinding attack.

5.3.3 Cached Java applets

To minimize loading times, the JVM maintains a cache of
previously loaded applets. In this cache the applets are sto-
red accordingly to the respective HTTP expires-header.
In addition to the applet itself, the cache also contains the
applet’s original URL. Only if an applet is requested from
the exact same URL, the cached version of the applet will be
used.

Rios and McFeters [61] have documented how this beha-
viour can be exploited in a multi session attack: For this
method to work, the victim has to be tricked twice into exe-
cuting the malicious code. The first time the code solely
loads the applet from attacker.org using the server’s
real IP address. This process only serves the purpose to
store the applet in the JVM’s cache. After the applet has
been delivered, the attacker changes the DNS mapping of
attacker.org to point to the targeted internal address.
If, in a new browser session, the victim visits again a page
that is controlled by the attacker, the malicious code dyna-
mically includes the applet in the page using the exact same
URL as in the attack’s first step. As the URL matched the
cache entry, the applet is retrieved from the cache. Howe-
ver, as the cache only contains the URL but not the actual IP
address, the JVM queries the attacker’s DNS server for the
IP of attacker.org and consequently pins the applet to
the internal address.

In addition Rios discussed that the same behaviour might
be triggered either by loading new JVM instances through
URL handlers (like picassa://) or by enforcing the
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execution of the applet using a different Java version (a capa-
bility that Sun intends to disable in the future) [61].

5.3.4 Attack capabilities provided by Java

Java provides full TCP and UDP socket connections to the
targeted host. This can be used for, e.g., port-scanning, fin-
gerprinting of non-HTTP services, or communication using
arbitrary protocols. In cases where the network services of
the targeted intranet host are not fully patched, the adver-
sary could use arbitrary, well known exploits to, e.g., trigger
buffer overflow vulnerabilities.

Furthermore, as Rios and McFeters [61] pointed out the
availability of mature Java libraries for virtually every pur-
pose enables the adversary to easily and quickly create attack
code that targets non-trivial or obscure network services.

5.4 DNS rebinding and Flash

Kanatoko [45] demonstrated, that Flash player plug-in is also
susceptible to DNS rebinding attacks. The Flash player does
neither inherit the browser’s pinning table nor implements
DNS pinning itself. Like Java applets, the Flash player’s
scripting language ActionScript supports low level socket
communication, thus extending the adversary’s capabilities
towards binary protocols. Using this capability non-HTTP
attacks like full portscans on the intranet or accessing binary
protocols are possible. Using the capabilities, Duong [12]
demonstrated how to uses a malicious Flash file to run a
TCP socket relay in the victim’s browser. Using a similar
approach, Kaminsky [43] was able to tunnel arbitrary TCP
protocols into the internal network. He exemplified this capa-
bility by running Nessus-scans on intranet hosts.

In order to evaluate the attack surface, Jackson et al. ran
a Flash 9 advertizement on a minor advertizing network.
Within three days they temporary compromised more than
25,000 internal networks while paying less than 50
USD [34].

6 Using the web browser as an attack proxy

In addition to attacks that either target the victim’s privacy
(Sect. 3) or the browser’s LAN (Sect. 4), it has also been
discussed how active, client-side content could be employed
to attack third parties. In such cases the victims web browser
is misused by the adversary as an attack proxy. This way the
attack’s real origin can be obfuscated as the actual network
connections come from the hijacked browser’s IP address.

This topic has received comparatively little attention in
the past. Therefore, we discus only three selected techniques
in this section. However, we anticipate this class of attacks to
gain momentum in the future, especially since Jackson et al.

have demonstrated in [34] that distributing a malicious Flash
advertizement can provide the adversary with capabilities
comparable to a mid-sized botnet.

6.1 Scanning Internet web applications for vulnerabilities

With the birth of the so called “Web 2.0” phenomena, various
web applications started to offer services that can be included
seamlessly into other web pages. In many cases, these ser-
vices are realized through cross-domain script-tags that
in turn invoke pre-defined callback functions [57]. Other ser-
vices transfer various cross-domain content into one single
domain, thus allowing cross-domain interaction. Hoffman
[31] demonstrated how victimized web browsers can abuse
such services to scan third party web applications for XSS
vulnerabilities. Instead of relying on DNS rebinding in order
to establish cross-domain read/write HTTP connections, they
employ Web 2.0 services which provide access to arbitrary
cross-domain web content.

In his example, Hoffman used “Google Translate” [19],
a service that offers to translate complete web pages from
one natural language into another one while preserving the
page’s HTML markup and active client-side content. The
service is invoked by providing an URL to the web page
that is supposed to be translated and then provides the trans-
lation result hosted on the service’s domain. The adversary
first requests the translation of a page that contains his mali-
cious JavaScript. This way the script runs on a webpage that
belongs to the translation service’s domain. Then the script
itself requests the translation of a page belonging to the tar-
get site. As the result of this translation again is hosted on
the service’s domain, the malicious script gains complete
read access to the foreign page. This way, the adversary’s
script can spider and analyse complete web applications.
The translation step does not interfere with the scripts pur-
pose, as the adversary is mainly interested in the web site’s
structure which is defined by its HTML markup. This way
the script is able to identify potential insertion points for
XSS attacks and evaluate if these points indeed represent
vulnerabilities.

As the adversary only uses a hijacked browser and a public
available Internet service in his scan, the real source of the
vulnerability scan is hidden effectively.

6.2 Assisting worm propagation

Lam et al. [51] discussed how web browsers can be abused
to aid the propagation of worms that spread through vulnera-
bilities in web applications. Such vulnerabilities are usually
exploited by requesting specially crafted URLs. Therefore,
the actual attack can be executed by any web browser via
CSRF.
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In Lam et al.’s worm propagation model, a worm-infected
web server adds the malicious client-side code to all ser-
ved web pages. This code then uses the web browsers that
have received the code to spread the worm further: First,
the victimized web browsers try to find vulnerable web ser-
vers using the BRA. If a potential attack target has been
located, the client-side script executes the attack by sending
the exploit using JavaScript’s indirect communication capa-
bilities. Finally, the freshly infected web server also adds
the malicious payload to its own web pages, thus helping to
spread the worm further.

Additionally, Lam et al. [51] shows how the resulting net-
work of infiltrated web browsers can be abused for distributed
denial of service attacks.

6.3 Committing click-fraud through DNS rebinding

Payment models of online advertizement networks are based
on the amount of visitors that reach the advertized site through
the respective ad. To counter naive fraud attempts, online ads
employ a random nonce as part of interaction between the
promoted site and the page that carries the advertizement. As
the content of this nonce is protected by the SOP, an adversary
cannot create accountable clicks using CSRF.

However, as shown above, Java or Flash based DNS rebin-
ding attacks allow socket connections to arbitrary network
locations. This enables browser-based cross domain read/-
write HTTP connections to both sites—the site that carry
ads and the promoted sites themselves. This capability empo-
wers the attacker to initiate sophisticated click-fraud attacks
that go as far as simulating realistic click-through site access
on the advertized site. Jackson et al. [34] exemplified how
this way large scale rebinding attacks can be used to commit
lucrative and hard to detect click-fraud.

7 Protecting against the specified threats

7.1 General observations

7.1.1 The fundamental dilemma

As already motivated in Sect. 1, all actions that are executed
by the discussed attacks are indeed to be considered “legal”
in respect to the applying specifications, RFCs and Internet
drafts. The ability to include, load, and link to cross-domain
resources is a fundamental characteristic of the hypertext-
Internet. Thus, prohibiting cross-context requests is not an
feasible option. However, solving the problems by introdu-
cing new restrictions on active client-side code might also
prove to be insufficient due to attacks that do not rely on
client-side code (see Sects. 3.1, 3.2, or 4.6) and the amount
of possible side-channels.

7.1.2 Cross site request forgery

From an abstract point of view, all threats that were specified
in this paper are CSRF attacks, as they all rely on the adver-
sary’s capability to create hidden cross-domain, cross-
protocol, or cross-host requests.

As explained in Sect. 2.4, in general CSRF attacks target
implicit authentication mechanisms, e.g., by creating hidden
HTTP requests that contain valid session cookies. The attacks
covered in this paper target authentication mechanisms which
are based on (physical) location: The user’s web browser pro-
vides access to the browser’s local attributes (like its cache)
and to the browser’s local LAN. In both cases the location
is used as an mean of implicit authentication: Only content
running inside the browser has access to the internal attri-
butes and only computers behind the firewall are allowed to
access the LAN, thus as discussed in Sect. 4.1, rendering the
firewall to a means of transparent implicit authentication.

Therefore, one can argue that the discussed issues are in
fact a subclass of a larger set of vulnerabilities. For this rea-
son, a potential direction for developing countermeasures
is to consider protection approaches that address CSRF in
general.

7.1.3 Server-side detection of local reconnaissance attacks

The main problem in the context of the specified issues is
that the attacked intranet servers have very limited means to
protect themselves against such attacks. All they receive are
HTTP requests from legitimate users, sometimes even in a
valid authentication context. Therefore, at the server-side it
is not always possible to distinguish between requests that
were intended by the user and requests that were generated
by a malicious JavaScript. In some cases evidence such as
external referrers or mismatching host headers are available
but this is not always the case. Furthermore, some of the
described attacks will still work even when the server would
be able to identify fraudulent requests.

For theses reasons, a reliable protection mechanism has
also to involve the client-side. Only at the client-side all
required context information concerning the single requests
is available. Furthermore, to stop certain attacks, like the
exploitation of unpatched vulnerabilities, it has to be pre-
vented that the malicious request even reaches the targeted
host.

7.2 Shortcomings of the same origin policy

The current state of JavaScript’s SOP leaves a lot to be desi-
red: On the one hand, the SOP is often regarded to be too
strict for modern application’s interoperability requirements.
Creating web mashups or implementing web APIs requires
the programmers to work around the SOP [52] which often
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leads to insecure programming practises [8]. Flash’s secu-
rity policy [53] which allows partial cross-domain access
demonstrates how cross-domain interaction can be allowed
without reducing the overall security of the application: All
permitted cross-domain interactions are configured in a
crossdomain.xmlpolicy file which can be obtained from
the application’s server.

On the other hand, the SOP is also not fine-grained enough.
Based on the policy, there are only two possible decisions:
Either “no access at all” or “unlimited access”. A JavaS-
cript is almighty in respect to documents that share the same
origin. For this reason every single XSS issue compromises
the complete vulnerable application. Measures to effectively
limit the capabilities of malicious scripts are cumbersome and
complicated [38]. Furthermore, as discussed in Sect. 2.3, the
document-level nature of the SOP is responsible for the BRA
to function.

More generally, it appears as if the design decision to
derive security properties exclusively from the site’s domain
name is questionable. The DNS mapping of the domain name
to the web server’s IP address is not within the power of the
web server. Consequently, the application’s security depends
on an outside entity which cannot be controlled by the appli-
cation itself. This fact leads to the discussed DNS rebinding
vulnerabilities. In turn DNS pinning, which was introduced to
counter rebinding attacks, introduces problems with dynamic
DNS services and DNS based redundancy solutions. Further-
more, DNS pinning is unable to protect against multi-session
attacks as they have been described by Soref [67] and Rios
and McFeters [61].

7.3 General advice

Before discussing potential countermeasures in Sect. 7.4 we
give a brief list of general protection advices that can be
applied without introducing specific protection technologies:

Server-side: As we have shown, victimized web browsers
provide the adversary with powerful capabilities in respect
to targets in the intranet which are comparable to situations
in which the attacker can connect directly to the potential
targets. Therefore, the security of intranet servers should be
treated carefully:

• Do not use the firewall for authentication: All sensi-
tive HTTP services in the intranet should employ explicit
authentication mechanisms on their own.

• Harden intranet services and hosts: Treat every poten-
tial attack target in the intranet as if it was exposed to the
public Internet. Apply all available security patches and
updates. Do not run applications that are not longer main-
tained. Evaluate the necessity of every service to reduce
the potential attack surface.

• Change all default passwords on appliances and appli-
cations: As shown above, even web interfaces that are
only accessible from within the local LAN are not save
against fraudulent requests. For this reason only non-
default passwords are able to provide sufficient protec-
tion.

• Eliminate potential information leaks: Check all net-
work services and especially DNS servers if these leak
information about the internal IP-range to the outside.

Client-side: Besides the countermeasures that are discussed
in Sect. 7.4, client-side measures comes down to reducing
the amount of active client-side technologies the adversary
might employ in his attack:

• JavaScript: Client-side scripting should only be enabled
for trusted pages which really require JavaScript to func-
tion. This does not provide protection for the case that
one of these pages were victim of an XSS attack, but it
reduces the attack surface significantly.

• Java: Without Java, a potential attacker is unable to obtain
the browser’s local IP address. This raises the bar for a
successful reconnaissance attack significantly. Further-
more, Java is a technology that provides TCP and UDP
sockets within a DNS rebinding attack.

• Flash: As shown in Sect. 5.4 Flash also provides the
attack with socket functionality in DNS rebinding attacks.
Furthermore, Jackson et al. [34] demonstrated that it is
easily possible to place malicious Flash applets onto web
advertizement networks.

In addition, all other, more obscure client-side scripting
languages and active technologies (such as VBScript or Acti-
veX) should be disabled as well.

7.4 Proposed countermeasures

Several countermeasures have been proposed to address
selected attack-types. To a certain, individual degree these
proposed methods are able to protect against their targeted
threat. Please refer to the cited publications for a detailed
account on the respective limitations. However, even a com-
bination of all techniques still does not provide complete
protection. In this section we list all relevant proposals to
document the state of the art in protection and to collect hints
in which direction future work should be aimed.

7.4.1 General countermeasures

As detailed above, turning of active client-side technologies
deprives the attacker of many of his capabilities. Unfortuna-
tely, only few modern websites function without JavaScript.
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For this reason, it is rarely feasible to disable JavaScript
completely. The NoScript Firefox extension [33] permits a
per site configuration whether JavaScript and other client-
side code should be enabled. NoScript’s default policy is to
disable all active content on unknown domains. However, the
extension does not defend against attacks that are executed
through XSS attacks on trusted sites. If a site, for which script
execution is allowed, has a XSS vulnerability, the adversary
can use this site to execute his malicious code in the browser.
Therefore, due to the high number of existing XSS flaws [9],
even with NoScript the attack surface remains rather large.

A more general protection approach is described by
Hallaraker and Vigna [25]. Their paper shows how to modify
the JavaScript-engine of a web browser to allow behaviour
based analysis of JavaScript execution. Using this newly
introduced capability, they apply intrusion detection mecha-
nisms to, e.g., prevent denial of service or XSS attacks. While
the paper does not address the threats that are subject of
our work, it may be possible to extend their work towards
detecting and preventing JavaScript Malware. To verify this
assumption further research work is necessary.

7.4.2 Countering privacy attacks

Jackson et al. [35] propose measures to defend against CSS
based cache-disclosure attacks (see Sect. 3.1). Their tech-
nique extends the Same Origin Policy to also apply to cache
and history information. This has the effect, that a JavaS-
cript can only obtain cache and history information about
elements that have the same origin as the script itself. The
authors implemented their concepts as “SafeHistory” [36],
an extension to the Firefox browser.

Jakobsson and Stamm [37] discuss a server-side technique
to protect against CSS-based browser history disclosure.
Their method prevents the attacker from guessing possible
URLs that may be contained in the user’s history by adding
semi-random parts to the URLs, thus effectively creating
URL pseudonyms. For this purpose, they introduced a server-
side web-proxy to apply the randomized components to the
application’s URL transparently.

To defend against cross-site timing attacks (see Sect. 3.2),
Bortz et al. [4] proposed a server-side module to ensure that
the web server always takes a constant amount of time to
process a request. For this reason they implemented “mod_
timepad”, an Apache module, which guaranties that every
HTTP chunk is sent a time since the request was received
which is a multiple of n milliseconds, with n being a user-
adjustable parameter.

7.4.3 Countering intranet and DNS rebinding attacks

To protect the intranet against script-based reconnaissance
and exploitation (see Sect. 4), we proposed in [42] a seg-

mentation of network addresses. Every possible IP address is
classified to be either local (i.e., part of the intranet) or remote.
When the rendering of a web page or the execution of client-
side script causes additional HTTP requests, these requests
are intercepted. If the origin of the request is a page which
was retrieved from a remote address and the respective target
lies within the local LAN, the request is prohibited. Additio-
nally, our approach provides partial protection against DNS
rebinding attacks by monitoring the local/remote status of
domain-name resolution. If the status of a domain switches
from remote to local, this is a clear indicator of a rebinding
attack that targets an intranet resource. If such a rebinding
attempt was identified, all further HTTP request or other
cross-document interaction originating from the offending
domain are denied. We implemented and evaluated our solu-
tion in the form of a Firefox extension [73].

To defend against DNS rebinding attacks (see Sect. 5),
Karlof et al. propose in [46] a same-origin policy that is based
on public-key cryptography. Instead of identifying the origin
of a given web-object by the URL that was used to request
it, the element’s “origin” is defined by the public key that is
associated with the element (e.g., the key that was employed
for an SSL-connection which delivered the element). Conse-
quently, in the proposed model, the browser would allow a
web object to access another web object only if their public
keys match.

Furthermore, Jackson et al. [34] propose several counter-
measures against DNS rebinding, ranging from smarter DNS
pinning strategies, over utilizing reverse DNS lookups, up to
implementing a firewall solution that prohibits the resolution
of external domain names to internal IP addresses. See [34]
for details.

8 Conclusion

8.1 Summary

In this paper we discussed and exemplified the capabilities of
a malicious JavaScript in respect to the victimized browser’s
local context. More precisely, we have shown that such a
script can execute various attacks to undermine the user’s
privacy (see Sect. 3), explore the browser’s LAN (see Sect. 4
and 5), and stealthily attack third party applications using the
victim’s IP address (see Sect. 6).

Unfortunately, there is no straight forward solution to
resolve the presented issues. As discussed in Sect. 7.1.1, the
atomic actions taken by the offending script are permitted
by the fundamental specification documents that define the
WWW. Most technical foundations that are employed by
the JavaScript-based attacks have already existed for several
years. However, many of the attack vectors have just recently
been disclosed in late 2006 and the first half of 2007. For
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this reason, it stands to argue that there still exist further
undisclosed attack methods.

In addition one can observe a rather uncontrolled growth
of third party browser add-ons such as Flash [11] or
Silverlight [58] that either support interfaces to JavaScript
or provide active client-side scripting capabilities on their
own. The power of these technologies often equals or exceeds
JavaScript’s capabilities. Therefore, concentrating on Java-
Script/HTML/HTTP will not suffice to counter the exem-
plified threats. Furthermore, the ongoing evolution of these
components adds to the probability for new attack vectors.

8.2 Outlook and future work

During our work on [42] and this paper, we identified several
possible directions for future research:

• Unified client-side security policy and reference
monitor: Future browsers should investigate and imple-
ment a central reference monitor which has to be used by
all active client-side technologies. Such a monitor should
assess and approve every security-relevant action (like
network connections) and, thus, enforce a unified security
policy. Especially in the case of DNS rebinding attacks,
the lack of such a common means for browser based secu-
rity mechanisms increases the problem’s severity. If all
client-side technologies (JavaScript, Java, Flash) would
utilize the same DNS pinning table, many of the exem-
plified issues would not exist.

• Combined client/server approach: As reasoned in
Sect. 7.1.3 most attacks are not deterministically detec-
table solely on the server-side. Additionally, approaching
the problem solely on the client-side is also infeasible (see
Sect. 7.1.1). Future research should investigate strategies
towards the security properties of cross-context interac-
tions that involve both the server and the browser.

• Overhauling the same origin policy: As reasoned in
Sect. 7.2, the SOP has several severe shortcomings. In
addition to the above proposed combined client/server
approach towards the regulations of cross-context inter-
actions, the SOP should be modified to match the new
concepts.

Trying to solve the problems in a way that is backwards
compatible with the current technologies will add further
obstacles.
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